Foam Cell Formation In Vivo Converts Macrophages to a Pro-Fibrotic Phenotype
نویسندگان
چکیده
Formation of foam cell macrophages, which sequester extracellular modified lipids, is a key event in atherosclerosis. How lipid loading affects macrophage phenotype is controversial, with evidence suggesting either pro- or anti-inflammatory consequences. To investigate this further, we compared the transcriptomes of foamy and non-foamy macrophages that accumulate in the subcutaneous granulomas of fed-fat ApoE null mice and normal chow fed wild-type mice in vivo. Consistent with previous studies, LXR/RXR pathway genes were significantly over-represented among the genes up-regulated in foam cell macrophages. Unexpectedly, the hepatic fibrosis pathway, associated with platelet derived growth factor and transforming growth factor-β action, was also over-represented. Several collagen polypeptides and proteoglycan core proteins as well as connective tissue growth factor and fibrosis-related FOS and JUN transcription factors were up-regulated in foam cell macrophages. Increased expression of several of these genes was confirmed at the protein level in foam cell macrophages from subcutaneous granulomas and in atherosclerotic plaques. Moreover, phosphorylation and nuclear translocation of SMAD2, which is downstream of several transforming growth factor-β family members, was also detected in foam cell macrophages. We conclude that foam cell formation in vivo leads to a pro-fibrotic macrophage phenotype, which could contribute to plaque stability, especially in early lesions that have few vascular smooth muscle cells.
منابع مشابه
Inhibitory effect of Cinnamon on prevention of foam cell formation in platelet and monocytes co-culture
Introduction: Atherosclerosis is one of the leading causes of cardiovascular disease. Following endothelial damage and platelet aggregation in that area and the recruitment of monocytes and their conversion to macrophages, LDL gradually accumulates under the endothelial artery wall and gradually oxidized and convert to oxi-LDL. By swallowing it, the macrophages turn into foam cell and then athe...
متن کاملThe pro-fibrotic and anti-inflammatory foam cell macrophage paradox.
The formation of foamy macrophages by sequestering extracellular modified lipids is a key event in atherosclerosis. However, there is controversy about the effects of lipid loading on macrophage phenotype, with in vitro evidence suggesting either pro- or anti-inflammatory consequences. To investigate this in vivo we compared the transcriptomes of foamy and non-foamy macrophages that accumulate ...
متن کاملTrypsin, Tryptase, and Thrombin Polarize Macrophages towards a Pro-Fibrotic M2a Phenotype
For both wound healing and the formation of a fibrotic lesion, circulating monocytes enter the tissue and differentiate into fibroblast-like cells called fibrocytes and pro-fibrotic M2a macrophages, which together with fibroblasts form scar tissue. Monocytes can also differentiate into classically activated M1 macrophages and alternatively activated M2 macrophages. The proteases thrombin, which...
متن کاملDifferentiation factors and cytokines in the atherosclerotic plaque micro-environment as a trigger for macrophage polarisation.
The phenotype of macrophages in atherosclerotic lesions can vary dramatically, from a large lipid laden foam cell to a small inflammatory cell. Classically, the concept of macrophage heterogeneity discriminates between two extremes called either pro-inflammatory M1 macrophages or anti-inflammatory M2 macrophages. Polarisation of plaque macrophages is predominantly determined by the local micro-...
متن کاملPotent Inducers of Macrophage Foam Cell Formation Sphingomyelinase Converts Lipoproteins From Apolipoprotein E Knockout Mice Into
The apoE knockout (E0) mouse is one of the most widely used animal models of atherosclerosis, and there may be similarities to chylomicron remnant–induced atherosclerosis in humans. Although the lesions of these mice contain large numbers of cholesteryl ester (CE)-laden macrophages (foam cells), E0 plasma lipoproteins are relatively weak inducers of cholesterol esterification in macrophages. Pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015